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Summary

progress in three different phases of our study of the

role of chemical bonding in adhesion is summarized in this report.

Phase one consisted of an experimental study of the self-adhesion

of thin layers of three crosslinked elastomers; namely, cis-

polyisoprene (natural rubber) and two polybutadienes. For the

polybutadienes, the strength of self-adhesion was found to be

strongly dependent upon the time of exposure of the two surfaces

to air before they were brought into ccntact. The same phenom-

enon did not take place on exposure to nitrogen nor for samples

of cis-polyisoprene and it was reduced or delayed in samples con-

taining antioxidant. It was therefore attributed to surface oxi-

dation reactions that can lead to interfacial covalent bonds with

polybutadiene but not with polyisoprene. Phase two consisted of

a study of the effect of the number of chemical bonds at an

interface between glass and polybutadiene on the joint strength

of the adhesive bond formed between them. !-he radioactivity

present in 14C labelled interfacial bonds was used as a measure

of the number of chemical bonds. Joint strength was determined

by the 1800 peel test. The strength of the joint was shown to

increase as the number of chemical bonds increased. Phase three

consisted of a study of the effect of various levels of adhesion
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between elastomer and glass bead filler on the tear strength

and tensile strength of polybutadiene, which served as the

model elastomer. Preliminary results indicate that good ad-

hesion increased the nominal tensile breaking stress, but the

elongation at break as well as the strain energy density at

break was lower for all the filled materials. Tear strength

of the filled materials was significantly greater than that of

the unfilled elastomer. Calculations of the size of a Griffith

crack based on the small number of samples studied so far in-

dicate that it is generally of the same order of magnitude as

the diameter of the largest glass particles present. This

aspect of the study is continuing.

F:
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Introduction

The objectives of this study have been first to obtain

direct evidence for chemical bonding at the interface between

similar and dissimilar materials and second to learn how the

density of chemical bonds affects the work of detachment of

the materials joined together. Two substantial technical

reports describing some of this year's progress have recently

been published. They are: Technical Report No. 5, "Bonding

Elastomer Layers Together by a Surface Oxidation Reaction", by

R. J. Chang, A. N. Gent, C. C. Hsu and K. C. Sehgal, October,

1979, and Technical Report No. 6, "Effect of Number of Chemical

Bonds on the Strength of Adhesion Between Glass and Polybutadiene",

by P. Dreyfuss, Y. Eckstein, Q.-S. Lien and H. H. Dollwet, December,

1979. Only the salient features of these studies will be included

in this report.

Results and Discussion

I. Effect of Surface Exposure Prior to Bonding

In the course of studies of the work of detachment of peel

test specimens with polybutadiene as both the overlayer and the

substrate, we observed that the strength of self-adhesion varied



not only with the degree of crosslinking between the layers

as reported last year but also with the time of exposure of

the two surfaces to air before they were brought into contact.

The latter observation led to an experimental study of the

self-adhesion of thin layers of three crosslinked elastomers:

cis-polyisoprene (natural rubber) and two polybutadienes having

different cis-l,4, trans-l,4 and 1,2 contents.

For some polybutadiene materials, as shown in Figures 1

and Z, the strength of self-adhesion was strongly dependent upon

the time of exposure of the two surfaces to air before they were

brought into contact. The strength rose so dramatically during

the first hour or so of exposure that sometimes the layers could

not later be forcibly separated. When the surfaces were exposed

to air for longer periods before joining them, the strength of

self-adhesion fell to low levels again. This remarkable en-

hancement in self-adhesion did not take place on exposure to

nitrogen and it was reduced or delayed in samples containing

added antioxidant.

Samples of polybutadiene, obtained at different times.

were found to respond quite differently to air exposure. It

is thought that the antioxidants added to the material by the
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manufacturer may have been changed over a period of years.

Even after extraction with hot acetone, however, the samples

did not develop self-adhesion as rapidly, or to the same

degree, as earlier samples. Either the added antioxidants are

difficult to remove by this method or the new material is itself

more resistant to oxidation. This aspect of oxidative inter-

linking is being examined further.

In striking contrast to the strong self-adhesion developed

in polybutadiene materials, no comparable effect was observed

with natural or synthetic cis-polyisoprene. Indeed, the self-

adhesion of crosslinked layers of natural rubber was found to

be decreased somewhat by prior exposure to air.

Now, it is well-known that oxidative reactions lead to

further crosslinking and hardening of polybutadiene vulcanizates

whereas, in contrast, they generally lead to softening of poly-

isoprene vulcanizates as a result of molecular scission (1-4).

Contact angle measurements were consistent with oxidative reac-

tions occurring in the surface regions of all the elastomers

studied. However, the reaction resulted in strong adhesion only

for the polybutadiene materials. This suggests that interfacial

bonding is due to a particular feature of the oxidation of the

polybutadiene that is not shown by polyisoprene. One particular

mechanism is outlined below.
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Oxidation of polyolefins is reported to involve two

main propagation steps (1-4).

R + 02 -- RO2.

R02 * + R'H---> ROaH + R'

In the first, a polymer radical reacts with oxygen to form the

peroxy radical which, in the second step, abstracts H from a

nearby group to form a hydroperoxide and a second radical. More-

over, the hydroperoxide itself decomposes slowly, generating

further radical species, so that the process is autocatalytic.

This general reaction scheme does not account for hardening

during oxidation. Another reaction must therefore be invoked:

the addition of polymer radicals to other polymer molecules to

form intermolecular bonds.

R 0 + R' - RR's

This reaction is known to occur in polybutadiene by addition

to the C-C double bond but not to a significant degree in poly-

isoprene where the radicals appear to be less reactive. It can

thus account for the interfacial bonding observed with polybuta-

diene but not with polyisoprene. Moreover, it will become of

proportionately greater importance as the concentration of

oxygen becomes lower, i.e., as oxidation continues in the inter-

facial region after the elastomer layers have been brought into
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contact. We therefore infer that the observed adhesion is due

to the attack of polymer free radicals, generated during oxi-

dation, upon molecules lying on the other side of the interface,

to bring about covalent interlinking.

Z. Effect of Number of Chemical Bonds

Studies of the effect of chemical bonding on the joint

strength of adhesive bonds formed between polybutadiene and

glass were carried out. The number of chemical bonds was deter-

mined using 14C labelled interfacial bonds and measuring the

resulting radioactivity. The method of synthesis was described

in Annual Report 3. Joint strength was measured using the 180

peel test with the slightly modified specimen shown in Figure 3.

Measurements of the peel force were carried out sequentially on

the two sides of the slides using the same procedure previously

described by Runge and Dreyfuss (5) . Work of adhesion, W, per

unit area of interface was calculated from the time average peel

force, P, per unit width, w, of the detaching layer: W = Z-.

All tests were carried out at 0.5 cm/min crosshead speed.

The results of the study are plotted in Figure 4 where the

observed work of adhesion is plotted against both e-emission and

the number of glycine molecules per 100 . The number of

glycines is equal to the number of interfacial bonds. The
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data are based on what appears to the eye to be interfacial

failure at the glass-rubber interface. Several conclusions

can be drawn from the results shown in the Figure:

1. As the number of glycine/100 2 z increases, the

work of adhesion increases.

Z. There are relatively few instances in which the

number of glycine/100 A z is greater than 4. By

far the largest number of points lie between two

and four glycine/100 A , although the mole fraction

of l-tr ichlorosilyl-2-(pm-chloroethylphenyl) -

ethane in the treating solution was varied from

0 to 1. The number of such silane molecules in

the interphase determines the maximum number of

radioactive glycine molecules that can be present.

This measured number of chemical bonds is of about

the same order of magnitude as the number of OH

0groups/100 A 1 usually quoted for glass dried

under our conditions (6-8). This suggests a near

1:1 correlation between the number of interfacial

bonds and the numnber of OH groups on the glass

surface and indicates that the polysiloxane layer

is probably no more than I-Z layers thick.
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3. As the number of glycine/100 increases, the

scatter in the data also increases. We believe

the scatter is real and results from an increasing

amount of tearing through the polybutadiene toward

the cloth. At higher peel forces patches of rubber

on the glass were always visible to the eye. There-

fore, instead of making a statistical analysis which

would give one line and a coefficient of correlation,

we have elected to draw two lines that encompass most

of the data and give slightly greater weight to the

lower values.

4. The slope of the lines is a measure of the increase

in the work par interfacial chemical bond. This slope

lies between 5 and 8 x 10-18 J/bond and is of the same

order of magnitude as C-N, C-C, and C=C bond strengths

found in the literature (9). Table 1 shows the

numerical comparisons. The experimental value is

only one order magnitude higher than the bond strengths.

The comparison would be even better if dispersion and

van der Waals forces are considered (10) . Furthermore,

experimentally at any given time it is not possible

to stress only one bond of a crosslinked network. Some

work must be expended stretching several bonds
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Table I

Comparison of Typical Bond Strengths With Observed Increase

in work of Adhesion per Chemical Bond

Bond E: J/Bonda SloDe/E b

C-N 0.5 x 10-11 9-15

C-C 0.6 x 10-'s 8-13

C=C 1.z x 10- 18 4-6

avalues in reference 14 are at Z98 0K.

bThe experimental slope is (4.8-7.7) x i0 - I s J/glycine
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simultaneously and this would lead to observed forces

being higher than theoretical forces. Thus we feel

that there is reasonable agreement between the slope

and bond strengths.

Bonds between silicon and oxygen or between silicon and

carbon were not included in Table 1 because after peeling,

essentially all the radioactivity remained on the glass surface.

Considering that the interface has the structure shown in Figure

5, this indicates that fracture must have occurred within the

polybutadiene or at one of the C-N bonds.

Since a correlation exists between the number of inter-

facial bonds of the model adhesive described in this report and

the resulting joint strength, we conclude that chemical bonds

at the interface improve adhesion of a properly prepared joint.

3. Studies of Model Filled Elastomer

Simple elastomers filled with glass beads or other model

fillers have been shown to be stiffer, and sometimes stronger.

than the corresponding unfilled material (11-14) . Large changes

have been associated with "dewetting", when the elastomer de-

taches from the glass beads at high strains to form vacuoles.

When dewetting is pronounced, then the presence of the glass

beads is stated to have no effect on the tensile properties (15).
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In order to study the process of fracture in glass-filled

elastomers in more detail, it thus seems advisable to control

the tendency of the elastomer to dewet from the glass. Glass

microspheres have therefore been obtained with a variety of

surface pretreatments. In some instances; for example, when

the glass had been treated with vinyltriethoxysilane; chemical

bonding to the elastomeric matrix would be expected to occur

during the free-radical crosslinking of the diene elastomer

itself after the glass filler had been incorporated. In other

instances; for example, when the glass had been pretreated

with dimethyldiethoxysilane or had received no pretreatment

at all; then no interfacial chemical bonding between the elasto-

meric matrix and the glass filler particles would be expected

to occur when the elastomer was later crosslinked.

Model filled compounds were prepared using these treated

and untreated glass microspheres, by mixing 50 phr into 100 phr

polybutadiene, together with 0.05% of a free-radical cross-

linking agent, dicumyl peroxide. These mixes were then pressed

into sheets and the elastomeric matrix was crosslinked by heat-

ing at 150 0C for 2 hrs. Tensile fracture experiments and

measurements of tear strength, hysteresis and swelling ratio
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were carried out on the resulting materials.

Tensile Properties

The results of the tensile fracture experiments are given

in Table 2. Data for unfilled rubber is included for comparison.

The nominal breaking stress was higher and the elongation at

break was lower for the compound filled with glass beads pre-

treated with vinyltriethoxysilane, which is expected to form

chemical bonds with the elastomer, and for the glass beads

pretreated with n-propylaminotriethoxysilane. Indeed, the

values obtained are higher than for unfilled elastomer and the

specimens showed stress whitening before rupture. Compounds

filled with glass treated with non-bonding silanes, dimethyl-

diethoxysilarne and octadecyltriethoxysilane, had lower breaking

stresses and lower breaking elongations than unfilled material.

These specimens also showed substantial stress whitening before

rupture. Nominal breaking stress of compounds containing un-

treated glass was higher or lower than unfilled material, de-

pending on the size of filler added but the elongation at break

was always lower than for unfilled elastomer.

An alternative measure of the strength in tension is

given by the strain energy density at break, Ub. These values

are given in the final column of Table Z. The results show a
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marked decrease in Ub on adding glass filler, even when the

glass was pretreated with a bondable silane, and a further

large decrease when the glass was pretreated with a non-bonding

silane.

Tear Strength

Measurements of fracture energy, or tear strength, T

were carried out on 5 or more strips of each compound. The

values obtained were found to vary by about + 15 per cent, even

though the tear force had been preaveraged along the length of

each strip. The mean values of tear strength are given in

Table 3. They are seen to be significantly increased by adding

glass particles, by about 25 per cent for the largar sized

particles. Moreover, the tear strength does not appear to

depend upon the degree of interfacial bonding to a significant

degree. The tear strength is somewhat higher for the compound

containing non-bonding octadecyltriethoxysilane coated glass

particles; but this may reflect merely the enhanced energy

dissipation of this material on deformation. The low value

of tear, strength for the compound containing glass particles

coated with dimethyldiethoxysilane may result not only from

non-bonding to the elastomer but also from poorer bonding to
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the glass of a weaker polysiloxane network from the diethoxy-

silane. All other polysiloxane coatings were obtained from

triethoxysilanes.

It seems likely that the intrinsic tear strength of the

filled materials is not much different from that of the elas-

tomeric matrix. The main effect of the filler particles is

apparently to cause a deviation of the tear path from a straight

line, so that the tear becomes rougher. A noticeable increase

in roughness of the torn surface was observed in comparison with

that of the unfilled material. The scale of roughness is probably

set by the size of the filler particles; it is noteworthy that

the larger glass particles gave higher tear strength compounds.

However, if the particle size is smaller than the natural tear

roughness of the unfilled elastomer, then they would presumably

have little influence on the tear strength by this particular

mechanism of enforced deviation of the tear path.

Fracture nuclei in tension

The depth, c, of a nick or flaw from which tensile

fracture initiates may be calculated from the measured tear

energy T and the fracture energy density Ub. Values obtained

in this way are given in the last column of Table 3. They are



seen to be significantly larger for the glass-filled materials

than for the unfilled elastomner, and to be generally of the

same order of magnitude as the diameter of the largest glass

particles present. The only significant exception is shown

by the last material, for which the filler bonding is least

strong and dewetting is most pronounced. In this case, the

initial fracture nucleus may be a larger flaw associated with

several contiguous dewetted particles.

Nevertheless, the general correlation shown in Table 3

between the calculated flaw size and the size of the glass par-

ticles, for materials having a wide range of values of Ub .

strongly suggests that tensile rupture in elastomers containing

solid particles takes place by catastrophic tearing from an

initial flaw which may be identified with an unusually large

dewetted particle. Clearly, when the particle size is smaller

than the size of adventitious flaws, about 50 rn in the present

case, then this correlation will cease to hold. Work with

other sizes of glass beads, both larger and smaller than the

ones used in this study, is in progress.

Hysteresis

Energy dissipation was clearly greater for filled than

for unfilled materials. This is seen in the results of measurements
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of mechanical hysteresis shown in Table 4. The differences in

hysteresis of coated and uncoated glass beads are small except

for the higher values obtained from materials containing glass

beads treated with octadecyltriethoxysilane. This probably

results from greater dewetting with these beads.
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